广东会

电池外壳生产项目设计方案_电池外壳生产项目设计方案模板

发布时间:2023-03-21 19:01:18 作者:定制工业设计网 3

   大家好!今天让小编来大家介绍下关于电池外壳生产项目设计方案_电池外壳生产项目设计方案模板的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

文章目录列表:

电池外壳生产项目设计方案_电池外壳生产项目设计方案模板

一、奥迪实现e-tron电动车电池铝制外壳可持续生产获得ASI认证

据外媒报道,奥迪是全球首家获得铝治理倡议证书的汽车制造商。根据该计划的性能标准认证,ASI确认奥迪符合ASI对铝行业用户的要求,奥迪在奥迪e-tron电池壳铝制件的设计和制造过程中将坚持可持续的理念。的独立第三方审计员对奥迪在Gy_r、德国内卡苏姆和比利时布鲁塞尔的工厂进行了评估。接下来,奥迪打算确保此类零部件在其供应链中保持可持续性。为此,奥迪专门与通过ASI认证的合作伙伴合作。奥迪采购与IT管理委员会成员BerndMartens表示,电池是奥迪全新纯电动汽车e-tron的重要组成部分,电池铝壳的可持续生产只是开始。奥迪将逐步拥有自己的材料研发、采购和生产流程,并尽可能在奥迪全球工厂审核铝零件。材料管理标准要求公司以节约资源的方式处理材料,分析产品的整体生命周期,在设计产品时考虑这种设计是否适合未来的维护和回收。

电池外壳生产项目设计方案_电池外壳生产项目设计方案模板

二、刀片电池:广东会源领域的一大步,王传福的一小步

刀片电池只是王传福布局的小步,将比亚迪变成一家广东会源汽车领域的开放平台,才是王传福的雄心所在。

文丨AutoR智驾 子墨

“刀片电池”,你期待吗?

昨天(3月29日),比亚迪赶在特斯拉电池日之前,正式发布了“刀片电池”。

作为一款号称具有300多项发明专利的电池,刀片电池最大的亮点就是:安全、安全、还是安全。

比亚迪集团董事长兼总裁王传福自信的说道:“刀片电池’体现了比亚迪彻底终结广东会源汽车安全痛点的决心,更有能力将引领全球动力电池技术路线重回正道,把‘自燃’这个词从广东会源汽车的字典里彻底抹掉。”

比亚迪“刀片电池”采用的一种全新结构的“超级磷酸铁锂电池”,通过去掉电池模组,在进行广东会包封装技术,在安全的前提下实现电池能量密度的增加。

表明来看,比亚迪的刀片电池就是将单体电池进行压扁拉长,做成类似“刀片”形状,再将多个拉长的单体电池进行组装形成电池包。

据悉,刀片电池的长从435mm、905mm、1280mm、2000mm到2500mm不等,厚度减薄到13.5mm。

比亚迪集团副总裁兼弗迪电池董事长何龙介绍称,“这种结构性设计方案不仅可以有效提高动力电池包的空间利用率,增加同一单位体积中的能量密度;而且还能保障电池内部的热扩散性能,从而达到安全的目的。”

现场,何龙用一根直尺演示了为什么刀片电池的优势,首先他将一根直尺放平,这就很容易折断,但如果将直尺旋转90度,则很难折断。

这保障了刀片电池的基本强度。

为了进一步验证“刀片电池”在安全性,在线上发布会上,比亚迪演示了一镜到底的电池针刺试验。

目前,针刺试验是车用动力电池安全性实验中最为严苛的一种,但由于当前大部分电池都不能通过该项试验,2015版国标强制要求中对针刺试验可选项目由企业选择性执行。

电池针刺试验是利用钢针刺穿电池极板,瞬间触发电池内部短路,从而引发电池热失控。

按照GB/T 31485-2015的针刺试验方法,首先需要将电池充满电,用直径为5-8mm的耐高温钢针,以(25±5)mm/s的速度,从垂直于电池极板的方向贯穿,贯穿位置宜靠近所刺面的几何中心,钢针停留在电池中,观察1小时,不起火、不爆炸才算合格。

此次针刺试验除了有比亚迪最新的刀片电池外,作为对比,还选择了三元锂离子电池、普通磷酸铁锂电池进行试验。

为了更加直观的观察三种电池表明温度的变化,比亚迪加入了电池煎鸡蛋环节,如果,电池热失控时,其外壳温度将会急速升高,电池间的热扩散会越广东会,这意味着临近的电池也会更快地升温而相继触发热失控,导致电池包的安全系数下降。

实验中的鸡蛋如果很快地被煎熟,说明电池在受到针刺时出现明显的热失控导致电池温度急剧上升。

在同样的测试条件下,首先进行试验的是三元锂子电池,在钢针刺穿电池的瞬间,三元锂子电池壳体广东会膨胀,随后泄压阀开启,并发生极端的热失控——剧烈燃烧现象,电池表面的鸡蛋被炸飞,表面温度广东会超过500℃。

接下来是普通磷酸铁锂电池,钢针从电池中央穿透其内部极板,在钢针穿透电池后,电池电压开始下降,电池外壳有一定程度的鼓胀,显示内部短路导致电池内部压力广东会上升,随后泄压阀打开,电池内部高压电解液喷出,结果显示,块状磷酸铁锂电池在被穿刺后无明火,有烟,表面温度达到了200℃~400℃,电池表面的鸡蛋被高温烤焦。

磷酸铁锂电池热失控反应之所以没有三元锂离子电池剧烈,主要是因为其正极材料分解温度在500摄氏度以上,热失控温度相比三元锂离子电池更高,其热失控风险相对较低。

最后试验的是比亚迪刀片电池,钢针从刀片电池中央穿透其极板后,电池电压下降和表面温度上升变化细微,穿刺位置没有火花、烟雾或电解液喷出,电池壳体也没有出现鼓胀。穿刺后的一小时内,电池无明火,无烟,电池表面的温度仅有30-60℃左右,电池表面的鸡蛋无变化,仍处于可流动的液体状态。

对于比亚迪刀片电池在针刺实验中的表现,中国科学院院士欧阳明高分析指出刀片电池的设计使得它在短路时产热少、散热快,评价刀片电池的表现“非常优异”。

据比亚迪官方表示,“刀片电池”通过结构广东会,在成组时可以跳过“模组”,大幅提高了体积利用率,最终达成在同样的空间内装入更多电芯的设计目标。”

如何在安全的前提下增加能量密度?

比亚迪在去年为它的“刀片电池”申请了三个专利:CN20191054429、CN201911011713和CN201911012284,通过简单的查询可以清晰的看到比亚迪“刀片电池”结构设计思路。

为了在有限的车身空间下,进一步提升电池的容量,比亚迪采取了CPT(cell to pack)技术。

其原理是,把电池电芯以阵列方式直接将磷酸铁锂电芯长度阵列式排封装在“600mm ≤ 第一尺寸 ≤ 2500mm ”的电池包中,将大电芯通过阵列的方式排布在一起,从而省略了电芯组装成模组的步骤,这种设计可以在保障安全的前提下,省去横梁、纵梁以及各种螺栓等附加件,从而使得电池包零部件数量减少40%,电池包体积利用率提高了15%-20%,生产效率提升了50%。

据悉,相较传统的有模电池包,“刀片电池”的重量比能量密度可达到180Wh/kg,相比此前有模电池组提升大约9%,电池在同等体积下能量密度上比传统铁电池提升了约50%。

何龙称,“刀片电池可以使续航里程可提升50%以上,达到了高能量密度三元锂电池的同等水平。”

据王传福现场透露,“刀片电池只在比亚迪汉纯电车型搭载应用,其他车型暂无规划,其综合工况下的续航里程达到605公里。”

比亚迪的刀片电池将在重庆弗迪电池有限公司进行生产,作为比亚迪旗下的独立的子品牌,弗迪系包括了弗迪电池、弗迪动力、弗迪科技、弗迪视觉和弗迪模具等五家子公司,是一个完整的汽车零部件配套体系。

何龙透露,几乎能想到的所有汽车品牌都在和比亚迪探讨关于‘刀片电池’技术合作的方案。”

可见,刀片电池只是王传福布局的小步,将比亚迪变成一家广东会源汽车领域的开放平台,才是王传福的雄心所在。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

电池外壳生产项目设计方案_电池外壳生产项目设计方案模板

三、500兆瓦单晶硅太阳能电池生产项目,这个500KW是个什么概念,顺便求高手给我普及下太阳能知识

500MW电池片的生产线保守投资在10个亿人名币左右,主要阐释的单晶硅电池片125×125mm或者多晶硅156×156mm为代表型号的年生产能力;500KW主要阐释的是以太阳能电池组件的总装机功率为衡量标准的离网或并网光伏电站的规模;500MW电池片,500MW多晶硅片,500MWGIGS薄膜太阳能电池等均是以电池片(单晶硅、多晶硅)、柔性非晶硅薄膜电池的年生产能力衡量的生产线规模;10MW光伏并网发电站和500KW光伏电站描述了类似的意义,主要阐释的是以太阳能电池组件的总装机功率为衡量标准的并网光伏电站的规模。
太阳能电池板原理
太阳能电池发电原理: 太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。 晶体硅太阳能电池的制作过程: “硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维。
20世纪末,我们的生活中处处可见“硅”的身影和作用,晶体硅太阳能电池是近15年来形成产业化最快的。生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。
太阳能电池的应用: 上世纪60年代,科学家们就已经将太阳电池应用于空间技术——通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。如:太阳能庭院灯、太阳能发电户用系统、村寨供电的独立系统、光伏水泵(饮水或灌溉)、通信电源、石油输油管道阴极保护、光缆通信泵站电源、海水淡化系统、城镇中路标、高速公路路标等。欧美等先进国家将光伏发电并入城市用电系统及边远地区自然界村落供电系统纳入发展方向。
太阳能电池板原理
太阳能电池主要由硅、砷化镓、硒铟铜等材料制成,它们地发电原理基本相同。以晶体硅为例,当太阳照射到硅地表面时,一部分光子地能量会被硅原子吸收,使原子内地电子发生跃迁,从而在材料内部形成一定地电位差,这样光能就转化为电能储存了起来。当太阳能电池接通电路时,电压就可以产生电流流过外部电路了
一、硅太阳能电池
1.硅太阳能电池工作原理与结构
太阳能电池发电的原理主要是半导体的光电效应,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成Ppositive)型半导体。
同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。黄色的为磷原子核,红色的为多余的电子。
P型半导体中含有较多的空穴,而N型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。
当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。
当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。
于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结,以增加入射光的面积。
另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用。为此,科学家们给它涂上了一层反射系数非常小的保护膜(如图),实际工业生产基本都是用化学气相沉积沉积一层氮化硅膜,厚度在1000埃左右。将反射损失减小到5%甚至更小。一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使用,形成太阳能光电板。
2.硅太阳能电池的生产流程
通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。
上述方法实际消耗的硅材料更多。为了节省材料,目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。
化学气相沉积主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用 LPCVD在 衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环 节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的 太阳能电池转换效率明显提高。
太阳能光伏供电系统的基本工作原理:
在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。对于其他类型的光伏系统只是在控制
机理和系统部件上根据实际的需要有所不同而已。
一般将光伏系统分为独立系统、并网系统和混合系统。如果根据光伏系统的应用形式、应用规模和负载的类型,对光伏供电系统进行比较细致的划分,可将光伏系统分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。
更进一步的详细说明和设计方案,请电话咨询:022-23786619
广东会(中国) -官方网站第十八研究所 天津广东会电源公司 天津广东会太阳科技有限公司

四、锂电池的原理及生产工艺流程?

一、锂离子电池原理
1.0 正极构造
LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极
2.0 负极构造
石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极
电芯的构造
电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用广东会碳。
根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。
3.0工作原理
锂电池内部成螺旋型结构,正极与负极之间由一层具有许多细微小孔的薄膜纸隔开。锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。锂离子电芯的能量容量密度可以达到300Wh/L,重量容量密度可以达到125Wh/L。锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。锂离子电池的正极采用钴酸锂,正极集流体是铝箔;负极采用碳,负极集流体是铜箔,锂离子电池的电解液是溶解了LiPF6的有机体。
锂离子电池的正极材料是氧化钴锂,负极是碳。当对电池进行充电时,电池的正极上有锂离子生成,生茶鞥的锂离子经过电解液运动到负极。而作为负极的碳呈现层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样道理,党对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,有运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。
锂离子电池盖帽上有防爆孔,在内部压力过大的情况下,防爆孔会自动打开泄压,以防止出现爆炸的现象。
锂离子电池的性能
1、高能量密度
与同等容量的NI/CD或NI/MH电池相比,锂离子电池的重量轻,其体积比能量是这两类电池的1.5~2倍。
2、高电压
锂离子电池使用高电负性的含元素锂电极,使其端电压高达3.7V,这一电压是NI/CD或NI/MH电池电压的3倍。
3、无污染,环保型
4、循环寿命长
寿命超过500次
5、高负载能力
锂离子电池可以大电流连续放电,从而使这种电池可被应用于摄象机、手提电脑等大功率用电器上。
6、优良的安全性
由于使用优良的负极材料,克服了电池充电过程中锂枝晶的生长问题,使得锂离子电池的安全性大大提高。同时采用特殊的可恢复配件,保证了电池在使用过程中的安全性。
※在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制:
1.负极材料的处理
1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。
2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。
2.制浆工艺的控制
1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。
2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。
3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。
3.采用先进的极片制造设备
1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。
2)涂布机单片极板上面密度误差值应小于±2%,极板长度及间隙尺寸误差应小于2mm。
3)辊压机的辊轴锥度和径向跳动应不大于4μm,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。
4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。
4.先进的封口技术
目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(λ=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素:
1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。
2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。
3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400℃)。
3.1 充电过程
如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。
正极上发生的反应为
LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子)
负极上发生的反应为
6C+XLi++Xe=====LixC6
3.2 电池放电过程
放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。
二、 工艺流程
锂离子电池的工艺技术非常严格、复杂,这里只能简单介绍一下其中的几个主要工序。
1、制浆:用专门的溶剂和粘结剂分别与粉末状的正负极活性物质混合,经高速搅拌均匀后,制成浆状的正负极物质。
2涂膜:将制成的浆料均匀地涂覆在金属箔的表面,烘干,分别制成正负极极片。
3、装配:按正极片—隔膜—负极片—隔膜自上而下的顺序放好,经卷绕支持呢个电池极芯,再经注入电解液、封口等工艺过程,即完成电池的装配过程,制成成品电池。
4、化成:用专用的电池充放电设备对成品电池进行充放电测试,对每一只锂电池都进行检测,筛选出合格的成品电池,待出厂。

   以上就是小编对于电池外壳生产项目设计方案_电池外壳生产项目设计方案模板问题和相关问题的解答了,电池外壳生产项目设计方案_电池外壳生产项目设计方案模板的问题希望对你有用!

   免责声明: 1、文章部分文字与图片来源网络,如有问题请及时联系我们。 2、因编辑需要,文字和图片之间亦无必然联系,仅供参考。涉及转载的所有文章、图片、音频视频文件 等资料,版权归版权所有人所有。 3、本文章内容如无意中侵犯了媒体或个人的知识产权,请联系我们立即删除,联系方式:请邮件发送至 cnc1698@l63.com