广东会

变速箱外壳的压铸工艺设计_变速箱外壳的压铸工艺设计图

发布时间:2023-03-21 21:29:27 作者:定制工业设计网 1

   大家好!今天让小编来大家介绍下关于变速箱外壳的压铸工艺设计_变速箱外壳的压铸工艺设计图的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

文章目录列表:

变速箱外壳的压铸工艺设计_变速箱外壳的压铸工艺设计图

一、压铸件的设计规范

压铸件的设计一定要考虑到压铸件壁厚、压铸件铸造圆角和脱模斜度、加强筋、压铸件上铸孔和孔到边缘的最小距离、压铸件上的长方形孔和槽、压铸件内的嵌件、压铸件的加工余量七个方面。
铸造圆角设计规范:通常压铸件各个部分相交应有圆角(分型面处除外),可使金属填充时流动平稳,气体也较容易排出,并可避免因锐角而产生裂纹。对于需要进行电镀和涂饰的压铸件,圆角可以均匀镀层,防止尖角处涂料堆积。压铸件的圆角半径R一般不宜小于1mm,最小圆角半径为0.5 mm。
压铸件内的嵌件设计规范:首先,压铸件上的嵌件数量不宜过多;其次,嵌件与压铸件的连接必须牢固,同时要求在嵌件上开槽、凸起、滚花等;再次,嵌件必须避免有尖角,以利安放并防止铸件应力集中,铸件和嵌件之间如有严重的电化腐蚀作用,则嵌件表面需要镀层保护;最后,有嵌件的铸件应避免热处理,以免因两种金属的相变而引起体积变化,使嵌件松动。
压铸件铸造圆角设计规范
压铸件壁厚的设计规范:薄壁比厚壁压铸件具备更高的强度和更好的致密性,鉴于此,压铸件设计中应该遵循这样的原则:在保证铸件具有足够强度和刚性的前提下应该尽可能减少壁厚,并保持壁厚具有均匀性。实践证明,压铸件壁厚设计一般以2.5-4mm为宜,壁厚超过6mm的零件不宜采用压铸工艺生产。压铸件壁太厚、壁太薄对铸件质量影响的表现:如果设计中铸件壁太薄,会使金属熔接不好,直接影响铸件强度,同时会给成型造成困难;壁太厚或者严重不均匀时,容易产生缩瘪及裂纹,另一方面,随着壁厚的增加,铸件内部气孔、缩松等缺陷也随之增多,同样会降低铸件强度,影响铸件质量。
压铸件加工余量的设计规范:一般情况下,由于压铸工艺的局限性,压铸件的某些尺寸精度、表面粗糙度或者是形位公差达不到产品图纸要求时,企业应该首先考虑到采用如校正、拉光、挤压、整形等精整加工的方法来进行修复,在精整加工不能完全解决这些问题时,就应该对压铸件的某些部位进行机械加工,这里要注意的是,在进行机械加工时应考虑选用较小的加工余量,同时尽量以不受分型面及活动成型影响的表面为毛坯基准面,以免影响加工精度。
压铸件脱模斜度的设计规范:设计压铸件时,就应在结构上留有结构斜度,无结构斜度时,在需要之处,必须有脱模的工艺斜度。斜度的方向,必须与铸件的脱模方向一致。

变速箱外壳的压铸工艺设计_变速箱外壳的压铸工艺设计图

二、铸造镁合金的铸造镁合金的应用和技术进展

90年代以来,在世界范围内,镁作为一种广东会崛起的工程金属材料,每年以15%的速率保持快速增长,远远高于铝、铜、锌、镍以及钢铁,这在近代工程金属材料的应用中是前所未有的。以镁合金压铸件为例,根据国际镁协会(International Magnesium Association)和HydroMagnesium的估计,1991年,在全球镁合金压铸件中,镁的应用已达到24000t。此后每年以15%—20%的速率稳步增长,及至1997年,已达64 000t。2000年突破100 000t大关。到2008年,可能增加到240000t规模,其中80%是汽车工业的应用 。
1 铸造镁合金的应用
1.1 航空航天领域
就航空材料而言,结构减重和结构承载与功能一体化是飞机机体结构材料发展的重要方向。镁由于其低密度、高比强度的特性使得其很早就在航空工业上得到应用。航空材料减重带来的经济效益和性能的改善十分显著,商用飞机与汽车减重相同重量带来的燃油费用节省,前者是后者的近100倍。而战斗机的燃油费用节省又是商用飞机的近10倍,更重要的是其机动性能改善可以极大提高其战斗力和生存能力。正因为如此,航空工业才会采取各种措施增加镁合金的用量。
1.2 军事领域
镁合金重量轻、比强度和刚度好、减振性能好、电磁干扰屏蔽能广东会等特点能满足军工产品对减重、吸噪、减震、防辐射的要求。
1.3 汽车领域
镁合金用作汽车零部件通常表现为以下优点:
1)提高燃油经济性综合标准,降低废气排放和燃油成本,据测算,汽车所用燃料的60%消耗于汽车自重,汽车每减重10%,耗油将减少8%-10%;
2)重量减轻可以增加车辆的装载能力和有效载荷,同时还可改善刹车和加速性能;
3)可以极大改善车辆的噪音、振动现象。
1.4 摩托车领域
50多年来,经过不断的技术革新,镁合金在摩托车上的应用也不断在广度和深度上进行扩展,应用车型从赛车扩展到运动型摩托、轻便型摩托、概念型摩托,覆盖欧美日十几种主要摩托车品牌,镁合金应用部件涵盖动力系统,传动系统以及各种摩托车附件四十余种,其中仅英国的Dymay轮毂就应用多达400种车型。国内摩托车镁合金的应用目前尚属空白,重庆隆鑫率先试制出型号为LXl50的“镁合金绿色概念摩托车”,在国内引起了广泛的关注,所采用的12个零部件如今已有3个实现了规模化生产。
1.5 3C领域
3C产品——Computer,Communication,Consum·erElectronicProduct(计算机类、通讯类、消费类电子产品)是当今全球发展最快的产业,数字化技术导致了各类数字化产品的不断涌现。镁合金3C产品最早出现于日本,1998年,日本厂商开始在各种可携式商品(如PDA.手机等)采用镁合金材质,如今运用镁合金最普遍的3C产品是笔记本电脑,也是由日本Sony公司率先推出的。在3C产品朝着轻、薄、短、小方向发展趋势的推动下,近年来镁合金的应用得到了持续增长。
2 铸造镁合金的熔炼技术
2.1 铸造镁合金液的阻燃技术
2.1.1 熔剂保护法
利用低熔点的化合物在较低的温度下熔化成液态,在镁合金液面铺开,因阻止镁液与空气接触从而起到保护作用。现在普遍使用的熔剂由无水光卤石(MgCI2—KC)为主,添加一些氟化物、氯化物组成。该剂使用较方便,生产成本低,保护使用效果好,适合于中小企业的生产特点。但是,该剂使用前要重新脱水,使用时会释放出呛人的气味。由于熔剂的密度较大会逐渐下沉,需要不断添加。使用过程中释放出大量有害气体,污染环境、腐蚀厂房严重。因此,研究新型的覆盖、精炼效果好且无公害的镁合金熔剂是一项重要课题。
2.1.2气体保护法
气体保护法是在镁合金液的表面覆盖一层惰性气体或者能与镁反应生成致密氧化膜的气体,从而隔绝空气中的氧,采用的主要保护气体是SF6、S02、CO2、Ar、N2等。为了进一步提高保护作用和减少较贵的SF6气体的用量,国外一般在SF6气体中混合空气或其他干燥气体如CO:混合气体保护效果好,但是存在以下问题:
1)污染环境,SF6会产生S02、SF4等有毒气体,SF6对全球变的作用是CO2的24900倍;
2)设备复杂,需要复杂的混气装置和密封装置;
3)腐蚀设备,显著降低坩埚使用寿命。
2.1.3 合金化法
过去人们采用在镁合金中添加铍元素来提高镁合金的阻燃性能,但铍的毒性较大,且加入量过高会引起晶粒粗化和增加热裂倾向,因此受到添加量的限制。日本学者研究认为,添加一定量的钙能明显提高镁合金的着火点温度,但是存在着加入量过高,且严重恶化镁合金的力学性能。同时加入钙和锆具有阻燃效果。国内研究认为,在镁合金AZ91D中加入稀土铈可有效提高镁合金的起燃温度。
2.2 镁合金熔体的变质处理技术
镁合金熔炼变质的目的是改变镁合金的组织形态,该工艺对合金的晶粒大小和力学性能有较大的影响,且对镁液中的氧化夹杂亦有一定影响。研究表明,对于不含Al的镁合金,采用锆进行变质处理具有很好的晶粒细化效果,作用原理是Zr发生包晶反应,促进晶粒细化。在Mg—Al类合金中加入合适的碳素材料后,使其与合金液起化学反应生成A1C4,该化合物可以起到外来晶核的作用,促使镁合金的晶粒细化。在AZ91镁合金基础上添加不同含量的混合稀土,对其铸态和固溶时效的组织及性能也有明显的效果。
3 镁合金成形技术
镁合金成形分为变形和铸造两种方法,当前主要使用铸造成形工艺。镁合金可以砂型铸造、消失模铸造、压铸、半固态铸造等方法成型,近年来发展起来的镁合金压铸新技术有真空压铸和充氧压铸,前者已成功生产出AM60B镁合金汽车轮毅和方向盘,后者也己开始用于生产汽车上的镁合金零件。解决汽车大型和复杂形状零部件的成形问题是当前进一步开发和改进镁合金成形加工技术的方向。这里就现在常用的镁合金铸造方法作一简要介绍。
3.1 压铸
该方法是将熔化的镁合金液,高速高压注入精密的金属型腔内,使其快速成形。根据把镁液送入金属型腔的方式,压铸机可分为热室压铸机和冷室压铸机两种。
1)热室压铸机。其压室直接浸在坩埚内镁液中,长期处于被加热状态,压射部件装在坩埚上方。这样压铸每循环一次时,不必特意给压室供给镁液,所以生产能快速、连续,易实现自动化。热室压铸机的优点是生产工序简单,效率高;金属消耗量少,工艺稳定;压入型腔的镁液较干净,铸件质量较好;镁液压人型腔时流动性好,适于压薄壁件。但压室、压铸冲头及坩埚长期浸在镁液中,影响使用寿命,对这些热作件材料要求较高。镁合金热室压铸机更适合生产一些薄壁而外观要求较高的零件,如手机和掌上电脑外壳等,但由于镁合金热室压铸机是采用冲头直接将镁合金液经过封闭的鹅颈和喷嘴压人金属模型腔,因此压射时增压压力较小,一般不适用于汽车、航天航空等大型、壁厚、载荷大的零件。
2)冷室压铸机。每次压射时,先由手工或通过自动定量给料机把镁液注入压射套筒内,因而铸造周期比热室压铸机要长些。冷室压铸机的特点是: 压射压力高,压射速度快,所以可以生产薄壁件,也可以是厚壁件,适应范围宽;压铸机可大型化,且合金种类更换容易,也可与铝合金并用;压铸机的消耗品比热室压铸机的便宜。多数情况下,对大型、厚壁、受力和有特殊要求的压铸件采用冷室压铸机生产。
镁合金压铸时,由于压射速度高,当镁液充填到模具型腔时,不可避免会有金属液紊流及卷气现象发生,造成工件内部和表面产生孔洞缺陷,因此对于要求高的铸件,如何提高其成品率是镁合金压铸所面临的主要问题之一。
3.2 半固态成形技术
镁合金半固态成形是近年来发展起来的成形技术,可以获得高致密度的镁合金制品,是具竞争力的镁合金成形方法。半固态成形主要有以下几种方法。
3.2.1 触变铸造
触变铸造是将制备的非枝晶组织的棒料定量切割后重新加热至液固两相区(固相体积分数为50%—80%),然后再采用压铸或模锻工艺半固态成形,触变铸造不使用熔化设备,锭料重新加热后便于输送和加热,易于实现自动化;但是,制备预制坯料需要巨大的投资,而且关键技术为国外少数几家公司所垄断,导致其成本居高不下,仅适于制造需高强度的关键零件。
3.2.2 流变铸造
流变铸造采用金属熔体做原料,冷却搅拌产生半固态合金浆料后,以管路或容器输送至压铸机直接成形,对于流变铸造,由于非枝晶半固态合金浆料在保持、状态控制和输送等方面存在着困难,在很大程度上限制了其工业应用,从而慢于触变铸造工业应用的步伐。随半固态铸造技术的进展,触变铸造在预制材料均匀性及成本、感应加热控制及材料消耗、成形过程的可靠性及重复性、废料回收等方面的限制越来越明显,其经济效益很难尽人如意,因此开发流变铸造再度受到人们的重视,日本日立制作所及UBE都开发出新的流变铸造工艺及设备。总之,流变铸造不仅可以低成本生产高质量的成形件,而且生产流程将比触变铸造显著缩短,更易于与传统压铸技术接轨,减少设备投资。显然,流变铸造技术将会有更大的应用潜力。
4 高性能铸造镁合金的研究进展
4.1 耐热镁合金
耐热性差是阻碍镁合金广泛应用的主要原因之一,当温度升高时,它的强度和抗蠕变性能大幅度下降,使它难以作为关键零件(如发动机零件)材料在汽车等工业中得到更广泛的应用。己开发的耐热镁合金中所采用的合广东会素主要有稀土元素(RE)和硅(Si)。稀土是用来提高镁合金耐热性能的重要元素。含稀土的镁合金QE22和WE54具有与铝合金相当的高温强度,但是稀土合金的高成本是其被广泛应用的一大阻碍。
Mg—Al—Si(AS)系合金是德国大众汽车公司开发的压铸镁合金。175 cC时,AS41合金的蠕变强度明显高于AZ91和AM60合金。但是,AS系镁合金由于在凝固过程中会形成粗大的汉字状Mg2Si相,损害了铸造性能和机械性能。研究发现,微量Ca的添加能够改善汉字状MgaSi相的形态,细化Mg2Si颗粒,提高AS系列镁合金的组织和性能。
4.2 耐蚀镁合金
镁合金的耐蚀性问题可通过两个方面来解决:
1)严格限制镁合金中的Pe、Cu、Ni等杂质元素的含量。例如,高纯AZ91HP镁合金在盐雾试验中的耐蚀性大约是AZ91C的100倍,超过了压铸铝合金 A380,比低碳钢还好得多。
2)对镁合金进行表面处理。根据不同的耐蚀性要求,可选择化学表面处理、阳极氧化处理、有机物涂覆、电镀、化学镀、热喷涂等方法处理。例如,经化学镀的镁合金,其耐蚀性超过了不锈钢。
4.3 阻燃镁合金
镁合金在熔炼浇铸过程中容易发生剧烈的氧化燃烧。实践证明,熔剂保护法和SF6、SO2、CO2、Ar等气体保护法是行之有效的阻燃方法,但他们在应用中会产生严重的环境污染,并使得合金性能降低,设备投资增大。
纯镁中加钙能够大大提高镁液的抗氧化燃烧能力,但是由于添加大量钙会严重恶化镁合金的机械性能,使这一方法无法应用于生产实践。
最近,广东会轻合金精密成型国家工程研究中心通过同时加入几种元素,开发了一种阻燃性能和力学性能均良好的轿车用阻燃镁合金,成功地进行了轿车变速箱壳盖的工业试验,并生产出了手机壳体、MP3壳体等电子产品外壳。
4.4 高强高韧镁合金
现有镁合金的常温强度和塑韧性均有待进一步提高。在Mg—Zn和Mg—Y合金中加人Ca、Zr可显著细化晶粒,提高其抗拉强度和屈服强度;加入Ag和Th能够提高Mg—RE—Zr合金的力学性能,如含Ag的QE22A合金具有高室温拉伸性能和抗蠕变性能,已广泛用作飞机、导弹的优质铸件;通过快速凝固粉末冶金、高挤压比及等通道角挤(ECAE)等方法,可使镁合金的晶粒处理得很细,从而获得高强度、高塑性甚至超塑性。
5 我国铸造镁合金的应用概况
5.1 生产受技术和装备的制约
目前我国原镁产量居世界首位。2000年全国产量约200000t,80%以上作为初级原料低价出口,国内消费20000t左右。其中只有2000t用于桑塔纳轿车变速箱壳体,其余均作为合金制备等一般用途。由于镁合金的技术装备和开发应用相对滞后,国内镁行业表现出严重的结构性矛盾。我国有色金属压铸已有相当的基础,现拥有压铸厂点及相关企业总共约3000家,压铸机制造厂约有20家,年产压铸件300000t。其中铝压铸件占75.5%,镁压铸件仅占1%左右。上海乾通汽车附件有限公司为上海桑塔纳轿车生产镁合金压铸变速箱外壳已有多年历史。但总体上看,与发达国家相比我国的压铸件综合质量较差(加工余量大、废品率高、合金利用率低、铸造工艺装备基础条件差、环保和能耗问题较严重、缺乏专门人才和新工艺新产品开发能力)。致使产品价格较高缺乏竞争力。可以说我们现有的基础完全不能适应镁合金产业化的要求。虽然镁合金从铸造工艺性看是一种非常适合于压铸的金属材料,但生产实践表明,镁合金压铸需要很高的技术水平和经验的积累。总的讲镁合金压铸的生产技术水平现在还很低,相对铝合金压铸,镁合金压铸件的质量和产量的稳定性较差、废品率较高,致使镁合金产品价格较高,制约了镁合金产品的推广应用和新产品的开发。应充分重视实现我国镁合金产业化过程中相关应用基础工作的研究和镁合金专门人才的培养。
5.2 政府高度重视
在“九五”期间科技部已开展了“镁合金材料在轿车上的应用研究”、“阻燃镁合金的研制”、“广东会质牺牲镁阳极的研制”等课题的研究。前期投入的研究工作还有镁合金标准的研究、管理与运行机制广东会研究等相关内容。2000年科技部启动了“镁合金开发应用及产业化”的前期战略研究,现该项目已列为国家“十五”重大科技攻关重大专项,正组织力量联合攻关;在国家“863”计划中也安排了有关镁合金新材料、新工艺的研究内容;国家计委也将镁合金产业化列为今年高新技术产业化示范项目;兵器等军工集团也开始启动了相应的研究开发计划。
5.3 国际合作日益活跃
2001年5月,中国台湾工业研究院一行5人前来祖国大陆考察访问,并就大陆、香港、台湾地区共同开发镁合金应用技术达成合作备忘录;香港生产力促进局也曾就该项目的合作事宜派人来京进行了多次洽谈;香港力劲公司与广东会合作成立了“压铸高新技术研究中心”;海峡两岸及香港已成立镁合金项目协调小组;广东会成立了中俄“轻金属材料”国际合作实验室;2000年10月组织国内有关专家赴欧洲就镁合金工业化应用项目进行了考察、调研;中美有关部门也正在积极洽谈、沟通;宁夏广东会与日本广东会公司和日本金属株式会社还签署了共同开发耐热镁合金的合同书等。
5.4 企业态度非常积极
上海汽车(集团)公司、一汽集团、广东会公司、奇瑞、长安、江铃等汽车企业都在用镁合金零部件;重庆隆鑫集团和西南铝业集团公司等单位合资组建的重庆镁业科技股份有限公司已经开发出了10多种镁合金摩托车零部件。这些镁合金零部件累计装车30多万辆。其单车用镁量达5 kS,总减重约3kg。

变速箱外壳的压铸工艺设计_变速箱外壳的压铸工艺设计图

三、自动变速箱壳体一般都用什么样的材料?

壳体的材料应具有足够的强度和良好的铸造性能,同时成本低廉。中小型变速器壳体的常用材料是性能不低于抗拉强度σb为200MPa的压力铸造铝合金。
英国标准BS
1490:1988
LM2压铸铝合金化学成分与日本标准JIS
H5302:2000
ADC12类似,只有表2所列的元素化学成分存在微小差别,其余元素一样。ADC12在国内已普及应用。
表2
LM2与ADC12的元素化学成分差别
铁(%)
铜(%)
锌(%)
LM2
≤1.0
0.7~2.5
≤1.0
ADC12
≤1.3
1.5~3.5
≤2.0
ADC12铝合金属于Al-Si-Cu系合金,该系列合金有ADC10、ADC12,ADC10的铸造性、耐压性好,适于制造大型压铸件。其力学性能和切削性好,但耐蚀性稍差。ADC12与ADC10比较,含Si量多,前者9.6%~12.0%,后者7.5%~9.5%,前者的成分在共晶点左右,合金的流动性最好,所以适于压铸复杂铸件,它的强度高,耐压性好,热脆性小。
另外还有ADC14合金,与ADC12比较,该合金耐热裂性差,耐压泄漏性和切削性都很差。
采用ADC12压铸铝合金,壳体壁厚可减小到2~3mm,表面粗糙度可达Ra6.3μm,机加工余量可小到1mm左右。铝合金壳体压铸生产率很高,机械加工方便。
故选择LM2或ADC12压铸铝合金作为变速器壳体材料。

四、压铸模具设计要点和注意事项

压铸模具设计要点和注意事项

压铸模要求高可靠性和长寿命,与压铸机、压铸工艺有机结合为一个有效的铸件生产系统,优化压铸模具设计、提高工艺水平,为压铸生产提供可靠保证,是大型压铸模设计所追求的方向。

压铸模具结构

通常压铸模具的基本结构包含:融杯、成形镶块、模架、导向件、抽芯机构、推出机构以及热平衡系统等。

压铸模具设计开发流程

模具设计和开发流程,模具设计阶段需要设计人员所做的工作及模具设计的整体思路,其中包含一些与标准认证相关的设计和开发流程,对设计阶段可能产生的缺陷具有一定的预防作用。

压铸模具设计要点

第一,运用快速原型技术和广东会软件建立合理的铸件造型,初步确定分型面、浇注系统位置和模具热平衡系统。

按照要求把二维铸件图转化为广东会实体数据,根据铸件的复杂程度和壁厚情况确定合理的收缩率(一般取0.05%~0.06%),确定好分型面的位置和形状,并根据压铸机的数据选定压射冲头的位置和直径以及每模压铸的件数,对压铸件进行合理布局,然后对浇注系统、排溢系统进行广东会造型。

第二,进行流场、温度场模拟,进一步优化模具浇注系统和模具热平衡系统。

把铸件、浇注系统和排溢系统的数据进行处理以后,输入压铸工艺参数、合金的物理参数等边界条件数据,用模拟软件可以模拟合金的充型过程及液态合金在模具型腔内部的走向,还可进行凝固模拟及温度场模拟,进一步优化浇注系统并确定模具冷却点的位置。模拟的结果以图片和影像的形式表达整个充型过程中液态合金的走向、温度场的分布等信息,通过分析可以找出可能产生缺陷的部位。在后续的设计中通过更改内浇口的位置、走向及增设集渣包等措施来改善充填效果,预防并消除铸造缺陷的产生。

第三,根据3D模型进行模具总体结构设计。

模拟过程进行的同时我们可以进行模具总布置设计,具体包括以下几个方面:

(1)根据压铸机数据进行模具的总布置设计。

在总布置设计中确定压射位置及冲头直径是首要任务。压射位置的确定要保证压铸件位于压铸机型板的中心位置,而且压铸机的四根拉杆不能与抽芯机构互相干涉,压射位置关系到压铸件能否顺利地从型腔中顶出;冲头直径则直接影响压射比的大小,并由此影响到压铸模具所需的锁模力的大小。因此确定好这两个参数是我们设计开始的第一步。

(2)设计成形镶块、型芯。

主要考虑成形镶块的强度、刚度,封料面的尺寸、镶块之间的拼接、推杆和冷却点的布置等,这些元素的合理搭配是保证模具寿命的基本要求。对于大型模具来说尤其要考虑易损部位的镶拼和封料面的配合方式,这是防止模具早期损坏和压铸过程中跑铝的关键,也是大模具排气及模具加工工艺性的需要。图4所示模具成形部分采用10块模块镶拼结构。

(3)设计模架与抽芯机构。

中小型压铸模具可以直接选用标准模架,大型模具必须对模架的刚度、强度进行计算,防止压铸过程中因模架弹性变形而影响压铸件的尺寸精度。抽芯机构设计的关键是把握活动元件间的配合间隙和元件间的定位。考虑模架工作过程中受热膨胀对滑动间隙的影响,大型模具的配合间隙要在0.2~0.3mm之间,成形部分的对接间隙在0.3~0.5mm之间,根据模具的大小及受热情况选用。成形滑块与滑块座之间采用方键定位。抽芯机构的润滑也是设计的重点,这个因素直接影响压铸模具的连续工作的可靠性,优良的润滑系统是提高压铸劳动生产率的重要环节。

(4)加热与冷却通道的布置及热平衡元件的选用。

由于高温液体在高压下高速进入模具型腔,带给模具镶块大量的热量,如何带走这些热量是设计模具时必须考虑的问题,特别是大型压铸模具,热平衡系统直接影响着压铸件的尺寸和内部质量。快速安装及准确控制流量是现代模具热平衡系统的发展趋势,随着现代加工业的发展,热平衡元件的选用趋向于直接选用的设计模式,即元件制造公司直接提供元件的二维和广东会数据,设计者随用随选,既能保证元件的质量还能缩短设计周期。

(5)设计推出机构。

推出机构可分为机械推出和液压推出两种形式,机械推出是利用设备自身的推出机构实现推出动作,液压推出是利用模具自身配备的液压缸实现推出动作。设计推出机构的关键是尽量使推出广东会的中心与脱型广东会的中心同心,这就要求推出机构要具有良好的推出导向性、刚性及可靠的工作稳定性。对于大型模具来说推出机构的重量都比较大,推出机构的元件与型框间容易因为模具自重而使推杆偏斜,使之出现推出卡滞现象,同时模具受热膨胀对推出机构的影响也特别大,因此推出元件与模框间的定位及推板导柱的固定位置是及其重要的`,这些模具的推板导柱一般要固定在把模板上,把模板、垫铁及模框间用直径较大的圆销或方键定位,这样可以最大限度地消除热膨胀对推出机构的影响,必要时还可以采用滚动轴承和导板来支撑推出元件,同时在设计推出机构时要注意元件间的润滑。北美地区模具设计者通常在动模框的背面增加一块专门的润滑推杆的油脂板,加强对推出元件的润滑。如图5所示,动模框底部增加润滑油板,有油道与推杆过孔相通,工作时加注润滑油,可以润滑推出机构,防止卡滞。

(6)导向与定位机构的设计。

在整个模具结构中导向与定位机构是对模具运行稳定性影响最大的因素,也直接影响到压铸件的尺寸精度。

模具的导向机构主要包括:合模导向、抽芯导向、推出导向,一般导向元件要采用特殊材料的摩擦副,起到减磨和抗磨的作用,同时良好的润滑也是必不可少的,每个摩擦副间都要设置必要的润滑油路。需要特别指出的是特大型滑块的导向结构一般采用铜质导套和硬质导柱的导向形式,配合以良好的定位形式,确保滑块运行平稳,准确到位。

模具定位机构主要包括:动静型间的定位、推出复位定位、成形滑块及滑块座间的定位、型架推出部分与型框间的定位等。动静型间的定位是一种活动性质的定位,配合的准确性要求更高,小型模具可以直接采用成形镶块间的凸凹面定位,大型压铸模具必须采用特殊的定位机构,以消除热膨胀对模具定位精度的影响,另外几种定位结构是元件间的定位,是固定定位,一般采用圆销和方键定位。成形镶块间的凸凹面定位,保证动静型间定位准确,防止模具错边。

   以上就是小编对于变速箱外壳的压铸工艺设计_变速箱外壳的压铸工艺设计图问题和相关问题的解答了,变速箱外壳的压铸工艺设计_变速箱外壳的压铸工艺设计图的问题希望对你有用!

   免责声明: 1、文章部分文字与图片来源网络,如有问题请及时联系我们。 2、因编辑需要,文字和图片之间亦无必然联系,仅供参考。涉及转载的所有文章、图片、音频视频文件 等资料,版权归版权所有人所有。 3、本文章内容如无意中侵犯了媒体或个人的知识产权,请联系我们立即删除,联系方式:请邮件发送至 cnc1698@l63.com