广东会

铝外壳结构设计原理及应用_铝外壳结构设计原理及应用实验报告

发布时间:2023-03-21 22:41:42 作者:定制工业设计网 1

   大家好!今天让小编来大家介绍下关于铝外壳结构设计原理及应用_铝外壳结构设计原理及应用实验报告的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

文章目录列表:

铝外壳结构设计原理及应用_铝外壳结构设计原理及应用实验报告

一、铝型材挤压模具设计的八大要点

一、铝型材的尺寸及偏差

铝型材的尺寸及偏差是由挤压模具、挤压设备和其他有关工艺因素决定的。

二、选择正确的铝挤压机吨位

选择挤压机吨位主要是根据挤压比来确定。如果挤压比低于10,铝型材产品机械性能低;如果挤压比过高,铝型材产品很容易出现表面粗糙以及角度偏差等缺陷。实心铝型材常推荐挤压比在30左右,空心铝型材则在45左右。

三、挤压模具外形确定

挤压模具的外形尺寸是指挤压模具的外圆直径和厚度。挤压模具的外形尺寸由型材截面的大小、重量和强度来确定。

四、挤压模具模孔尺寸的确定

对于壁厚差很大的铝型材,难成形的薄壁部分及边缘尖角区应适当加大尺寸;而对于宽厚比大的扁宽薄壁型材及壁板型材的模孔,桁条部分的尺寸可按一般型材设计,而腹板厚度的尺寸,除考虑公式所列的因素外,尚需考虑挤压模具的弹性变形与塑性变形及整体弯曲,距离挤压筒中心远近等因素。

此外,挤压速度、有无牵引装置等对模孔尺寸也有一定的影响。

五、合理调整铝金属的流动速度

合理调整铝金属流动速度,就是要尽量保证铝型材断面上每一个质点应以相同的速度流出模孔。挤压模具设计时,尽量采用多孔对称排列,根据铝型材的形状,各部分壁厚的差异和比周长的不同,及距离挤压筒中心的远近,来设计不等长的定径带。

一般来说,铝型材某处的壁厚越薄,周长越大,形状越复杂,离挤压筒中心越远,则此处的定径带应越短。如果当用定径带仍难于控制铝金属流速时,对于铝型材断面形状特别复杂、壁厚很薄、离中心很远的部分,可采用促流角或导料锥来加速铝金属流动。而对于那些壁厚大得多的部分或离挤压筒中心很近的地方,就应采用阻碍角进行补充阻碍,以减缓此处的`流速。

此外,还可以采用工艺平衡孔,工艺余量或者采用前室模、导流模、改变分流孔的数目、大小、形状和位置来调节铝金属的流速。

六、挤压模具强度校核

由于铝型材挤压时模具的工作条件很恶劣,所以模具强度是模具设计中的一个非常重要的问题。除了合理布置模孔的位置,选择合适的模具材料,设计合理的模具结构和外形之外,精确地计算挤压力和校核各危险断面的许用强度也是十分重要的。

目前计算挤压力的公式很多,但经过修正的别尔林公式仍有工程价值。挤压力的上限解法,也有较好的适用价值;用经验系数法计算挤压力比较简便。至于模具强度的校核,应根据产品的类型、模具结构等分别进行。

一般平面模具只需要校核剪切强度和抗弯强度。舌型模和平面分流模则需要校核抗剪、抗弯和抗压强度,舌头和针尖部分还需要考虑抗拉强度等。

强度校核时的一个重要的基础问题是,选择合适的强度理论公式和比较精确的许用应力。近年来,对于特别复杂的模具,可用有限元法来分析其受力情况与校核强度。

七、合理的工作带尺寸

确定分流组合模的工作带,要比确定半模工作带复杂得多,不仅要考虑到型材壁厚差,距中心的远近,面且必须考虑到模孔被分流桥遮蔽的情况。处于分流桥底下的模孔,由于金属流进困难,工作带必须考虑减薄些。

在确定工作带时,首先要找出在分流桥下型材壁厚最薄处即金属流动阻力最大的地方,此处的最小工作带定为壁厚的两倍;壁厚较厚或金属容易达到的地方,工作带要适当考虑加厚,一般按一定的比例关系,再加上易流动的修正值。

八、模孔空刀结构及尺寸

模孔空刀,就是模孔工作带出口端悬臂支承的结构。当铝型材壁厚≥2mm时,可采用比较容易加工的直空刀结构;当t<2mm时,可选择在有悬臂处加工斜空刀。

铝外壳结构设计原理及应用_铝外壳结构设计原理及应用实验报告

二、铸造铝合金的应用主要有哪些,具体是什么

铸造铝合金是以熔融金属充填铸型,获得各种形状零件毛坯的铝合金。具有低密度,比强度较高,抗蚀性和铸造工艺性好,受零件结构设计限制小等优点。分为Al-Si和Al-Si-Mg-Cu为基的中等强度合金;Al-Cu为基的高强度合金;Al-Mg为基的耐蚀合金;Al-Re为基的热强合金。大多数需要进行热处理以达到强化合金、消除铸件内应力、稳定组织和零件尺寸等目的。用于制造梁、燃广东会叶片、泵体、挂架、轮毂、进气唇口和发动机的机匣等。还用于制造汽车的气缸盖、变速箱和活塞,仪器仪表的壳体和增压器泵体等零件。
铸造铝合金具有良好的铸造性能,可以制成形状复杂的零件;不需要庞大的附加设备;具有节约金属、降低成本、减少工时等优点,在航空工业和民用工业得到广泛应用。用于制造梁、燃广东会叶片、泵体、挂架、轮毂、进气唇口和发动机的机匣等。还用于制造汽车的气缸盖、变速箱和活塞,仪器仪表的壳体和增压器泵体等零件。

铝外壳结构设计原理及应用_铝外壳结构设计原理及应用实验报告

三、铝合金外壳在压铸中需要注意的问题有哪些

铝合金外壳在压铸中需要注意的问题有哪些?下面小编为您讲解:
一、考虑脱模的问题。
二、考虑铝合金压铸壁厚的问题,厚度的差距过大会对填充。
三、在结构上尽量避免出现导致模具结构复杂的结构出现,不得不使用多个抽芯或螺旋抽芯。
铝合金外壳在压铸中需要注意的问题有哪些
四、有些压铸件外观可能会有特殊的要求,如喷油。
五、设计时考虑到模具问题,如果有多个位置的抽芯位,尽量放两边,最好不要放在下位抽芯,这样时间长了铝合金压铸下抽芯会出现问题。

四、铝合金门窗工程技术规范之5结构设计

5 结构设计

5.1 一般规定

5.1.1 铝合金门窗为建筑物外围结构的重要组成部分,一般情况下属于易于替换的结构构件,承受自重以及直接作用于其上的风荷载、地震作用和温度作用等,不分担主体结构承受的各种荷载和作用。

5.1.2 铝合金门窗是建筑外围护结构的组成部分,除必须具备足够的刚度和承载能力外,铝合金门窗自身结构、铝合金门窗与建筑洞口连接之间,须有一定的变形能力,以适应主体结构的变位。当主体结构在外荷载作用下产生的变形时,不应使门窗构件产生过大的内力和不能承受的变形。

5.1.4 铝合金门窗的面板玻璃为脆性材料,为了不致由于门窗受力后产生过大挠度导致玻璃破损,同时也避免因杆件变形过大而影响门窗的使用性能——开关困难、水密性能、气密性能降低或玻璃发生严重畸变等,故对铝合金门窗受力杆件,需同时验算其挠度和承载力。

铝合金门窗连接件根据不同受荷情况,需进行抗拉(压)、抗剪和抗承压强度验算。

根据《建筑结构可靠度设计统一标准》GB50068规定,对于承载能力极限状态,应采用下列设计表达式进行设计:

γ0S≤R (2)

式中:R——结构构件抗力的设计值;

S——荷载效应组合的设计值;

γ0——结构重要性系数。

门窗构件的结构重要性系数(γ0),与门窗的设计使用年限和安全等级有关。考虑门窗为重要的持久性非结构构件,因此,门窗的安全等级一般可定为二级或三级,其结构重要性系数(γ0)可取1.0。因此,本规范设计表达式简化表示为S≤R,本承载力设计表达式具有广东会意义,作用效应设计值S可以是内力或应力,抗力设计值R可以是构件的承载力设计值或材料强度设计值。

铝合金门窗玻璃的设计计算方法按现行行业标准《建筑玻璃应用技术规程》JGJ113的规定执行。按此计算方法,门窗玻璃的安全系数K=2.50,此时对应的玻璃失效概率为1‰。

5.1.5 铝合金门窗构件在实际使用中,将承受自重以及直接作用于其上的风荷载、地震作用、温度作用等。在其所承受的这些荷载和作用中,风荷载时主要的作用,其数值可达(1.0~5.0)kN/㎡。地震荷载方面,根据《建筑抗震设计规范》GB50011规定,非结构构件的地震作用只考虑由自身重力产生的水平方向地震作用和支座间相对位移产生的附加作用,采用等效侧力方法计算。因为门窗自重较轻,即使按最大地震作用系数考虑,门窗的水平地震荷载在各种常用玻璃配置情况下的水平方向地震作用力一般处于(0.04~0.4)kN/㎡的范围内,其相应的组合效应值仅为0.26 kN/㎡,远小于风压值。温度作用方面,对于温度变化引起的门窗杆件和玻璃的热胀冷缩,在构造上可以采用相应措施有效解决,避免因门窗构件间挤压产生温度应力造成门窗构件破坏,如门窗框、扇连接装配间隙,玻璃镶嵌预留间隙(本规范第5章第5.3.2条已规定)等。同时,多年的工程设计计算经验也表明,在正常的使用环境下,由玻璃中央部分与边缘部分存在温度差而产生的温度应力亦不致使玻璃发生破损。因此,本规范规定进行铝合金门窗结构设计时仅计算主要作用效应重力荷载和风荷载,地震作用和温度作用效应不作计算,仅要求在设计构造上采取相应措施避免因地震作用和温度作用效应引起门窗构件破坏。

进行铝合金门窗构件的承载力计算时,当重力荷载对铝合金门窗构件的承载能力不利时,重力荷载和风荷载作用的分项系数(γG、γW)应分别取1.2和1.4;当重力荷载对铝合金门窗构件的承载能力有利时(γG、γW)应分别取1.2和1.4。

5.1.7 铝合金门窗年温度变化△T应按实际情况确定,当不能取广东会际数据时应取80℃。

5.2 材料力学性能

5.2.1 铝合金型材和抗拉、压强度设计值是根据材料的强度标准值除以材料性能分项系数取得的,本规范按《铝合金结构设计规范》GB50429规定材料性能分项系数(γf)取1.2,所以,相应的铝合金型材抗拉、压强度设计值为:

铝合金型材强度标准(fak)一般取铝合金型材的规定非比例延伸强度Rρ0.2,Rρ0.2可按现行国家标准《铝合金建筑型材》GB5237的规定取用。为便于设计应用,将上式计算得到的数值取5的整数倍,表5.2.1中的铝合金抗拉、压强度设计值即为按照这一要求计算得出的。

因风荷载分项系数γW=1.4,材料性能分项系数γf=1.2,本规范铝合金型材总安全系数为K=γWγf=1.68。

5.2.2 铝合金门窗中钢材主要用于连接件(如连接钢板、螺栓等),其计算和设计要求应按现行国家标准《钢结构设计规范》GB50017的规定进行。其常用钢材的强度设计值亦按现行国家标准《钢结构设计规范》GB50017的规定采用。

5.2.4 在铝合金门窗的实际使用中,失效概率最大的即为门窗五金件、连接构件其承载力须满足其产品标准的要求,对尚无产品标准的受力五金件、连接件须提供由专业检测机构出去的产品承载力的检测报告。

铝合金门窗五金件、连接构件主要用于门窗窗扇与窗框的连接、锁固和门窗的连接,一旦出现失效,将影响窗扇的正常启闭,甚至导致窗扇的坠落,宜具有较高的安全度。根据目前国内工程的经验,一般情况下,门窗五金件、连接构件的总安全系数可取2.0,故抗力分项系数γR(或材料性能分项系数γf)可取为1.4.所以,当门窗五金件产品标准或检测报告提供了产品承载力标准值(产品正常使用极限状态对应的承载力)时,其承载力设计值可按承载力标准值除以相应的抗力分项系数γR(或材料性能分项系数γf)1.4确定。特殊情况下课按总安全系数不小于2.0的原则通过分析确定相应的承载力设计值。

5.2.5 为方便使用,本规范在附录A中收录了门窗常用紧固件和焊缝的强度设计值或承载力设计值。本规范计算门窗常用紧固件材料强度设计值时所取的抗力分项系数γR(或材料性能分项系数γf)分别为:

1 不锈钢螺栓、螺钉:总安全系数K=3,抗拉:γf=2.15;抗剪:γR=2.857;

2 抽芯铆钉:总安全系数K=1.8,γR=1.286;

3 焊缝材料强度设计值按现行国家标准《钢结构设计规范》GB50017的规定采用。

5.4 铝合金门窗主要受力杆件计算

5.4.1 对于铝合金门窗杆件这类细长构件来说,受荷后起控制作用的旺旺是杆件的挠度,因此进行门窗工程计算时,可先按门窗杆件挠度计算选取合适的杆件,然后进行杆件强度的复核。门窗中横框型材受力形式是双弯杆件,当门窗垂直安装时,中横框型材水平方向承受风荷载作用力,垂直方向承受玻璃的重力。为使中横框型材下面框架内的玻璃镶嵌安装和使用不受影响,本规范要求验算在承受重力荷载作用下中横框型材平行于玻璃平面方向的挠度值。

5.4.2 门窗型材细长杆件受弯后其最大弯曲正应力广东会于最大弯曲剪应力,所以在对门窗杆件进行强度复核时可仅进行最大弯曲正应力的验算。同时,因铝合金门窗自重较轻,其在竖框杆件中产生的轴力通常情况下都很小,可忽略不计。

在进行受理杆件截面抗弯承载力验算时,铝型材的抗弯强度设计值(f)可按本规范5.2.1条的规定采用(fa);当铝型材中加有钢芯时,其钢芯的抗弯强度设计值f可按本规范5.2.2条的规定采用(fb)

按《铝合金结构设计规范》GB50429规定,铝合金型材截面塑性发展系数(γ),当采用强硬化(T4、T5状态)型材时取1.00;当采用弱硬化(T6状态)型材时根据不同的截面形状分别可取1.00或1.05,而对于铝合金门窗常用截面形状,大部分都取γ=1.00。为方便实际计算应用,本规范规定在进行铝合金门窗受力杆件截面抗弯承载力验算时统一取γ=1.00。

5.4.3 铝合金门窗框、扇主要受力杆件的力学模型,应根据门窗的立面分格情况、开启形式、框扇连接锁固方式等,按照《建筑结构静力学计算手册》计算方法,分别简化为承受各类分布荷载或集中荷载的简支梁和悬臂梁等来进行计算。为方便使用,本规范在附录B中,规定了门窗杆件挠度、弯矩的简化计算方法,可参照执行。

5.5 连接设计

5.5.1 铝合金门窗构件的端部连接节点、窗扇连接铰链、合页和锁紧装置等门窗五金件和连接件的连接点,在门窗结构受力体系体系中相当于受力杆件简支梁和悬臂梁的支座,应有足够的连接强度和承载力,以保证门窗结构体系的受力和传力。在我国多年的铝合金门窗实际工程经验中,实际使用中损坏和在风压作用下发生的损毁,很多情况都是由于五金件和连接体本身承载力不足或链接螺钉、铆钉拉脱而导致链接失效而引起。因此,在铝合金门窗工程设计中,应高度注意门窗五金件和连接件承受力校核和连接可靠性设计,应按荷载和作用的分布和传递,正确设计、计算门窗连接节点,根据连接形式和承载情况,进行五金件、连接件及紧固件的抗拉(压)、抗剪切和抗挤压等强度校核计算。

5.5.2 在进行铝合金门窗五金件和连接件强度计算时,根据不同连接件情况,可分别采用应力表达式:σ≤f或承载力表达式:S≤R进行计算。

通常情况下,进行连接件强度计算时,一般可采用应力表达式进行计算;而门窗五金件产品标准或产品检测报告所提供的一般为产品承载力,在此情况下,采用承载力表达式进行计算将较为直观、简单。

5.5.8 不同金属相互接触处,容易产生广东会属腐蚀,所以要求设置绝缘垫片或采取其他防腐措施。在正常条件下,铝合金与不锈钢材料接触不易发生广东会属腐蚀,一般可不设置绝缘垫片。

5.5.9 连接螺栓、螺钉或铆钉的中心距和中心至构件边缘的距离,应按《铝合金结构设计规范》GB50429规定执行,同时应满足构件受剪面进行验算。同事,当螺钉直接通过型材孔壁螺纹受力连接时,应验算螺纹承载力。必要时,应采取相应的补强措施,如采用加衬板等,或改变连接方式。

5.6 隐框窗硅酮结构密封胶设计

5.6.1 硅酮结构密封胶在施工前,应进行与玻璃、型材的剥离试验,以及相接触的有机材料的相容性试验,合格后方能使用。如果硅酮结构密封与接触材料不相容,会导致结构胶粘结力下降或丧失。

5.6.2 硅酮结构密封胶的粘结宽度、厚度的设计计算,《玻璃幕墙工程技术规范》JGJ102均作了详细规定。在进行隐框窗结构胶粘接宽度、厚度的设计计算时,应考虑风荷载效应和玻璃自重效应,按照非抗震设计计算公式进行设计计算。

“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb】,就能免费领取哦~

   以上就是小编对于铝外壳结构设计原理及应用_铝外壳结构设计原理及应用实验报告问题和相关问题的解答了,铝外壳结构设计原理及应用_铝外壳结构设计原理及应用实验报告的问题希望对你有用!

   免责声明: 1、文章部分文字与图片来源网络,如有问题请及时联系我们。 2、因编辑需要,文字和图片之间亦无必然联系,仅供参考。涉及转载的所有文章、图片、音频视频文件 等资料,版权归版权所有人所有。 3、本文章内容如无意中侵犯了媒体或个人的知识产权,请联系我们立即删除,联系方式:请邮件发送至 cnc1698@l63.com