广东会

医用治疗仪外壳体设计规范

发布时间:2023-03-21 22:51:42 作者:定制工业设计网 20

   大家好!今天让小编来大家介绍下关于医用治疗仪外壳体设计规范的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。

文章目录列表:

医用治疗仪外壳体设计规范

一、光学仪器如何进行使用

光学仪器如何进行使用?内窥镜和其他的用于微创手术的医疗光学仪器在每次使用之前必须进行消毒。现今借助高压灭菌进行消毒,其中,光学仪器在高于3bar的压力和高于130℃的温度下用热蒸汽进行处理。
这种类型的用于微创手术的光学仪器例如由DE 195 07 205C2公开。
为了确保,即使在高压灭菌的高度热负荷下也没有湿气侵入仪器壳体中,由实践得知,用作玻璃罩和/或端部透镜的在端侧的端窗通过焊接或钎焊流体密封地与仪器壳体连接。
为了将端窗焊接到仪器壳体的相应的窗框中,端窗具有金属的边缘涂层,由此端窗可借助锡或金焊料焊接到为此设置的窗框中。在焊接到窗框中时相应的端窗被液态的焊料浴包围。在端窗基本在焊料浴中浮动的位置中,难以使端窗精确地布置窗框的中间。端窗的偏心位置此时自动地导致在端窗和窗框之间的焊料层的厚度不同。
由于对仪器壳体、窗框和焊料使用的材料的热膨胀系数不同,尤其在端窗偏心放置在窗框中的情况下始终会出现显著的应力,该显著的应力会导致端窗上形成裂纹和/或应力破裂以及由此导致不密封。
技术实现要素:
在此基础上,本发明的目的是,提供用于微创手术的光学仪器,在其中端窗可低应力地固定在对应的窗框中。
根据本发明,该目的的实现方案的特征在于,在每个窗框的面对相应的端窗的内周面上构造至少两个从窗框沿径向向内突出的区段。
通过构造分开的从窗框沿径向向内突出的各个区段,在焊接期间相应的端窗保持在窗框的中间,因为基于沿径向向内突出的区段基本没有留下空间用于端窗的偏心布置。因此,该构造使得,在端窗的需要焊接的整个周边上可形成厚度基本均匀的焊料边缘。通过围绕相应的端窗的厚度均匀的焊料边缘可明显降低在钎焊和冷却时出现的作用到相应的端窗上的应力,从而在端窗上不再出现应力裂纹或应力破裂。
通过本发明的优选的实施方式提出,在每个窗框上构造三个或四个沿径向向内突出的区段。
已经发现,三个或四个沿径向向内突出的区段的构造方式特别有效,从而确保端窗在相应的窗框中的居中布置,并且另一方面提供足够的自由空间来形成厚度基本均匀的焊料边缘。
当然根据本发明也可在对应的窗框上设置多于四个沿径向向内突出的区段。
此外,通过本发明提供,在每个窗框的沿径向向内突出的区段的径向内表面和对应的端窗之间留有用于构造焊料层的间隙。在窗框和端窗之间留有的间隙确保在周边完全包围端窗的焊料边缘的构造方式,该焊料边缘确保流体密封的密封。
为了形成沿径向向内突出的区段,根据本发明提出,从窗框沿径向向内突出的每个区段都构造成波形的前拱起部。
由于波形的前拱起部实现了在窗框和端窗之间的焊料边缘构造成特别薄的区域的基本仅点状的构造方式。
窗框的沿径向向内突出的区段的波形构造一方面足以使端窗置于窗框的中间且另一方面确保厚度基本均匀的焊料边缘的构造,由此明显降低了由于使用材料的热膨胀系数不同而形成可能的应力。
为了确保端窗在对应的窗框中的居中位置,根据本发明提出,一个窗框的所有的波形的前拱起部具有相同的拱起半径。当然可能的是,在具有多个端窗的光学仪器中每个窗框的波形的前拱起部的拱起半径与同一光学仪器的其他窗框的拱起半径不同。
根据本发明还可通过以下方式降低由于使用材料的热膨胀系统不同而可能出现的应力,即,沿径向向内突出的区段均匀地在相应的窗框的内周上分布地布置。这是指,例如在使用三个区段的情况下该三个区段以120°以及在四个区段的情况下该四个区段以90°彼此错开地在窗框的内周上分布地布置。
为了形成用于容纳端窗的窗框,通过本发明提出,仪器壳体的远端和/或近端形成窗框。远端和/或近端的壳体内壁直接作为窗框的构造方式尤其应用在筒体直径很小、例如小于10mm的光学仪器中。
最后,通过本发明的可替代的实施方式提出,窗框构造成可固定在仪器壳体的远端和/或近端上的单独的构件。窗框作为可固定在远端和/或近端的壳体内壁上的单独的构件的构造方式尤其应用在筒体直径较大、例如为10mm以及更大的光学仪器中。
附图说明
本发明的其他特征和优点根据仅示例性地示出依据本发明的用于微创手术的光学仪器的实施例的相应附图获得,本发明不限于该实施例。在附图中示出:
图1示出了根据现有技术的构造成内窥镜的用于微创手术的光学仪器的示意性纵剖面;
图2示出了根据本发明的光学仪器的远端的经剖切的前视图;以及
图3示出了根据图2的细节III的放大示意图。
具体实施方式
图1的绘图示意性地示出了构造成内窥镜的用于微创手术的光学仪器1的构造。光学仪器1具有中空的仪器壳体2,各种光学元件、例如透镜3和光纤束4布置在中空的仪器壳体中。
仪器壳体2在远端5以及近端6处分别经由端窗7流体密封地封闭,端窗布置在周边完全包围端窗7的窗框8中。
在图1示出的光学仪器1中,远端的端窗7构造成端部透镜9并且近端的端窗7构造成在目镜单元11中的玻璃罩10。
内窥镜和其他的医疗光学仪器1在每次使用之前必须进行消毒。现今借助高压灭菌进行消毒,其中,光学仪器1在高于3bar的压力和高于130℃的温度下用热蒸汽进行处理。
为了确保,即使在高压灭菌的高度热负荷下也没有湿气侵入仪器壳体2中,用作玻璃罩10和/或端部透镜9的在端侧的端窗7尤其通过热接合工艺、例如焊接或钎焊流体密封地与仪器壳体2连接。通常,粘结方法不适用于接合端窗7,因为粘结连接不能长时间地承受高压灭菌的热负荷。
在对光学仪器1进行高压灭菌时,由于使用的材料的热膨胀系数不同,在与仪器壳体2焊接或钎焊的端窗7中会出现显著的应力,该显著的应力会导致端窗7形成裂纹和/或应力破裂以及由此导致不密封。
该应力在根据现有技术的光学仪器1中广东会过以下方式出现,即,在焊接到窗框8中时相应的端窗7被液态的焊料浴包围且仅借助焊接芯轴固紧。为了使端窗7焊接到仪器壳体2的相应的窗框8中,端窗7具有金属的边缘涂层,由此端窗可借助锡或金焊料焊接到为此设置的窗框8中。
在端窗7基本在焊料浴中浮动的位置中,尤其在成角度的光学系统中很难的是,使端窗7精确地布置窗框8的中间。端窗7的偏心位置此时自动地导致在端窗7和窗框8之间的焊料层的厚度不同,从而在钎焊时会出现不同的热膨胀以及在后续冷却时会出现不同的热收缩。
为了构造用于容纳端窗7的窗框8,原则上提供两种不同的实施方式。
优选在仪器壳体2的筒体直径很小、例如直径小于10mm的光学仪器1中,尤其在仪器壳体2的远端5处仪器壳体2的壳体内壁直接形成窗框8。
在仪器壳体2的筒体直径较大、例如筒体直径为10mm以及更大的光学仪器1中,尤其在仪器壳体2的远端5处窗框8构造成单独的构件,单独的构件可固定在仪器壳体2的远端的壳体内壁上,如在图2中示出地。
下面根据附图图2和图3阐述窗框8的构造。
为了提供可使端窗7低应力地固定在对应的窗框8中的光学仪器1,在每个窗框8的面对相应的端窗7的内周面上构造至少两个从窗框8沿径向向内突出的区段12。
如尤其从图3中可见,沿径向向内突出的区段12优选构造成窗框8的波形的前拱起部13。向内突出的区段12的径向高度的尺寸如此确定,即,在每个窗框8的沿径向向内突出的区段12的径向内表面14和对应的端窗7之间留有用于构造焊料层的间隙15。
通过构造分开的从窗框8沿径向向内突出的各个区段12,在焊接期间相应的端窗7保持在窗框8的中间,因为基于沿径向向内突出的区段12以及在区段12的径向内表面14和端窗7的外周之间的仅很小的间隙15基本没有留下空间用于端窗7的偏心布置。因此,该构造使得,在端窗8的需要钎焊的整个周边上可形成厚度基本均匀的焊料边缘。通过围绕相应的端窗7的厚度均匀的焊料边缘可明显降低在钎焊和冷却时出现的作用到相应的端窗7上的应力,从而在端窗7上不再出现应力裂纹或应力破裂。
在图2示出的实施方式中,窗框具有四个构造成波形的前拱起部13的沿径向向内突出的区段12。当然也可在每个窗框8上仅设置三个或多于四个的沿径向向内突出的区段12。
在附图图2中波形的前拱起部13与窗框8以及与端窗7成比例地增大且未按尺寸比例示出,从而可清楚地示出沿径向向内突出的区段12的构造。
如还由图2可看出,沿径向向内突出的四个区段12以90°彼此错开地均匀地在窗框8的内周上分布地布置。沿径向向内突出的区段12在窗框8的内周上的均匀分布降低了应力的出现,因为由此使得焊料边缘更加均匀地形成在端窗7的周边上,即使沿径向向内突出的区段12为其他数量时以相应的角间距的均匀分布也是有利的。
为了确保端窗7在对应的窗框8中的居中位置,窗框8的所有波形的前拱起部13具有相同的拱起半径r。
当然也可在具有多个端窗7的光学仪器1中使每个窗框8的波形的前拱起部13的拱起半径r与相同光学仪器1的其他窗框8的拱起半径r不同。
因此,光学仪器1的如前所述地构造的窗框8的特征是,基于从窗框8沿径向向内突出的区段12的构造,需要焊接到窗框8中的端窗7可始终位于窗框8的中间。这同时确保在窗框8和端窗7之间构造有厚度基本均匀的焊料边缘,由此在钎焊和冷却时出现的作用到相应的端窗7上的应力可明显减小,从而在端窗7上不再出现应力裂纹或应力破裂。
附图标记列表
1 光学仪器
2 仪器壳体
3 透镜
4 光纤束
5 远端
6 近端
7 端窗
8 窗框
9 端部透镜
10 玻璃罩
11 目镜单元
12 区段
13 前拱起部
14 内表面
15 间隙
r 拱起半径

医用治疗仪外壳体设计规范

二、壳体,箱体结构分别都有哪些种类,功能及作用

火箭的基本组成部分有推进系统、箭体结构和有效载荷。有控火箭还装有制导和控制系统,有时还可根据需要在火箭上装设遥测、安全自毁和其他附加系统。 推进系统是火箭飞行的动力源。固体火箭的推进系统就是固体火箭发动机。液体火箭的推进系统包括发动机、推进剂贮箱、增压系统和管路活门组(见飞行器推进系统)。 箭体结构的作用是装载火箭的所有部件,使之构成一个整体。通常固体火箭发动机的壳体和液体火箭的箱体构成箭体结构的一部分。除此之外,还包括尾段、级间段、仪器舱结构和有效载荷整流罩等部分。箭体结构应有良好的空气动力外形。在完成相同功能的前提下,箭体结构的重量和体积越小越好。减轻箭体结构重量的途径,除设计技巧和工艺方法外,结构型式和材料的选择也很重要。 有效载荷是火箭所要运送的物体。火箭的用途不同,有效载荷也不同。军用火箭的有效载荷就是战斗部(弹头)。科学研究用的火箭的有效载荷是各种研究仪器。运载火箭的有效载荷则是人造卫星、载广东会无人飞船或空间探测器等航天器。

医用治疗仪外壳体设计规范

三、仪表的防爆防护等级

你好我是从事自动化仪表的,我来告诉你,希望可以帮到你
一、 防爆概念
1、 引起爆炸的三个必要条件,三个条件同时具备 —— 爆炸
点火所需能量 source of igrution;空气或氧气 air or oxygen;flammable air flammable dust
2、 防止爆炸的产生必从三个必要条件来考虑,限制了其中的一个必要条件,就限制了爆炸的产生。
在工业过程中,通常从下述三个方面着手对易燃易爆场合进行处理。
1)预防或最大限度地降低易燃物质泄漏的可能性;
2)不用或尽量少用易产生电火花的电所元件;
3)采取充氮气之类的方法维持惰性状态。
二、 危险区域的等级分类及电气元件防爆分类和允许温度区域
1、 危险区域的等级分类
0区(Zone 0): 易爆气体始终或长时间存在
1区(Zone 1): 易燃气体在仪表的政党工作过程中有可能发生或存在
2区(Zone 2): 一般情形下,不存在易燃气体且即使偶尔发生,基存在时间亦很短
易爆区域等级划分,国际标准与美国标准的对照比较
I.E.C. N.E.C.
气体 Zone 0 Class I, Division I
Zone 1 Class I, Division I
Zone 2 Class I, Division II
粉尘 Zone 10 Class II, Division I
Zone 11 Class II, Division II
I.E.C.: 国际电工技术委员会(Internaional Electrotechnical Commission)
N.E.C.: 美国电气规程(National Electrical Code, U.S.A.)
2、电气元件防爆分类
1、一般保护 EN50.014
2、浸油保护 0 EN50.015
3、充压保护设施 p EN50.016
4、加充粉末 q EN50.017
5、阻燃壳体 d EN50.018
6、提高安全系数 e EN50.019
7、本安保护 i EN50.0120
8、气密保护 h 未统一
9、压力花保护 n 未统一
10、特殊措施 s 未统一
3、电气设备允许温度区域
电气元件温区等级号 元件表面温度最大允许值(°C) 气体燃点(°C)
T1 200T450 450
T2 200T300 300
T3 135T200 200
T4 100T135 135
T5 85T100 100
T6 T85 85
三、 几种常见物质的爆炸特性
名称 燃点(°C) 温度等级 爆炸等级组号 名称 燃点(°C) 温度等级 爆炸等级组号
丙酮 540 T1 IIA 乙炔 305 T2 IIC
醋酸酐 330 T2 IIA 苯 555 T1 IIA
丁烷 365 T2 IIA n-丁醇 340 T2 IIA
苯氯酸 590 T1 IIA 乙醇 425 T2 IIA
乙醋酸 460 T1 IIA 甲醇 455 T1 IIA
硝基苯 430 T1 IIA n-戊烷 285 T3 IIA
丙烷 470 T1 IIA 甲苯 535 T1 IIA
氢气 560 T1 IIC 硫化氢 270 T3 IIB
二硫化碳 102 T5 IIC
四、本安型传感电路的供电限制
供电限制主要体现在以下三个方面:
1、将动力电与电子元件隔离。
2、采取措施杜绝外界干扰电磁场通过继电或电流输出端偶合至电子元件中。
3、限制传感电路的工作电源及电压
本安型电路可分为两类:ia及ib。Ib本安电路必须保证政党工作状态下以及系统中存在一起故障时,电路元件不发生燃爆。Ia本安电路则要求正常工作状况下及存在两起故障时,元器件不发生燃爆。
五、EH仪表所遵循的主要防爆标准
1、IEC / CENELEC / EUrOPE及NORTH AMERICA / FM标准为经常选用,而CANADA / CSA标准几乎在中国不使用。
例: CENELEC: Eex de/Eex d ib IIC T2-T6
FM: NI/I/Z/ABCD DIP/II, III/1/EFG
XP/I/1/ABCD DIP/II, III/1/EFG
CSA: Class I, Div 2, ABCD
2、新的欧洲防爆标准ATEX100a将取代原CENELEC标准(截止2003年)
ATEX 100a: II IG Eex ia IIB T6
I II 1G Zone 0 1D, 2D,3D dust explosion
Mining other 2G Zone 1
Industry industry 3G Zone 2
六、仪表壳体防护等级的划分
作为应用于易爆危险区的仪表,对其外壳的保护等级亦应作出规定,赋予一定的代码,即IP等级号。
IEC144规定的壳体保护等级由一个对应其抗外界物体冲击与穿刺能力及防水能力的代码表示。例如:本安型仪表测量电路板不应从其壳体中取出,否则会违反IP40所提出的最低要求。保护等级由两位数字组成,在其前加上IP字样。
IP1 2
第一位数字 第二位数字
抗外界物体冲刺能力 防水能力
0无抗冲穿能力 0无防水穿能力
1外界物体尺寸大于50mm(特大) 1水自落下滴
2外界物体尺寸大于120mm(中) 2水滴入角度为-15°
3外界物体尺寸大于2.5mm(小) 3水以60°角度喷射
4颗粒状外界物体,粒度大于1mm 4从各方面喷射
5危险性尘埃 5 50升/分的水束
6穿透性尘埃(仅适用于特殊壳体) 6 100升/分的水束
7以1米/分的速度浸入水中
8 以预先商定的方式浸入水中
我国的防爆等级标准为"GB3836.1-2000 爆炸性气体环境用电气设备",该标准将由下列防爆型式专用标准补充或修改。
GB 3836.2 爆炸性气体环境用电气设备第2部分:隔爆型"d"
GB 3836.3 爆炸性气体环境用电气设备第3部分:增安型"e"
GB 3836.4 爆炸性气体环境用电气设备第4部分:本质安全型"i"
GB 3836.5 爆炸性气体环境用电气设备第5部分:正压型"p"
GB 3836.6 爆炸性气体环境用电气设备第6部分:充油型"O"
GB 3836.7 爆炸性气体环境用电气设备第7部分:充砂型"q"
GB 3836.9 爆炸性气体环境用电气设备第9部分:浇封型"m"
GB 7957 矿用安全帽灯
以上标准和本标准不适用于医用电气设备、发爆器、发爆器试验仪和点火电路试验仪
至于你所提到的"EX2DB4",本人实在是没见过类似你的标准,疑为你误抄了此型号或符号.
常见符号为"ExdⅠ/Ⅱ BT3"
"Ex"为广东会符号,表示explosive(此条为个人理解)
"d"表示次防爆型式为"隔爆型d".
"Ⅰ"或"Ⅱ"表示电气设备分类,Ⅰ为煤矿用电气设备,Ⅱ为除煤矿外其它爆炸性气体环境用设备.其中,Ⅱ类隔爆型"d”和本质安全型"i”电气设备又分为ⅡA,ⅡB和ⅡC类.
"T3"表示温度组别.
具体分类及含义,详见"GB3836.1-2000 爆炸性气体环境用电气设备".

四、超声诊断仪由哪几部分组成

超声诊断仪由探头、主机、电源、显示器、壳体及外设组成。

1、探头是超声诊断仪的核心部件之一,价格昂贵。由于使用频繁,是最容易损坏的部分。

2、换能器是探头的重要部件,也称为晶体或声头,由压电陶瓷构成,它的任务是将电信号变换为超声波信号发射以及接收超声波信号后变换为电信号。

3、声透镜是探头上部接触人体的胶状专用物质,长期使用会造成自然磨损、划痕、开裂、腐蚀、脱胶、起泡等。

4、壳体是声头外壳,破损通常多是由于意外所致。

5、现在超声诊断仪的主机一般包含前端部分和计算机控制部分。

扩展资料:

超声诊断仪通过测量了解生理或组织结构的数据和形态,发现疾病,作出提示的一种诊断方法。超声诊断是一种无创、无痛、方便、直观的有效检查手段,尤其是B超,应用广泛,影响很大,与X射线、CT、磁共振成像并称为4大医学影像技术。

用于医学诊断的超声波,主要是脉冲反射技术,包括A型、B型、D型、M型、V型等。从发展趋势看 ,超声已经在向彩色显示及广东会立体显示进展。此外穿透技术及组织定征也正为众多超声工作者努力研究。

参考资料来源:

百度广东会-超声诊断

   以上就是小编对于医用治疗仪外壳体设计规范问题和相关问题的解答了,医用治疗仪外壳体设计规范的问题希望对你有用!

   免责声明: 1、文章部分文字与图片来源网络,如有问题请及时联系我们。 2、因编辑需要,文字和图片之间亦无必然联系,仅供参考。涉及转载的所有文章、图片、音频视频文件 等资料,版权归版权所有人所有。 3、本文章内容如无意中侵犯了媒体或个人的知识产权,请联系我们立即删除,联系方式:请邮件发送至 cnc1698@l63.com